

Contents lists available at ScienceDirect

Journal of Molecular Catalysis A: Chemical

journal homepage: www.elsevier.com/locate/molcata

Alkylalumination of arylacetylene catalyzed by zirconocene catalysts supported on solid materials

Ryukichi Takagi^{a,*}, Nao Igata^a, Kazuhiro Yamamoto^{a,b,**}, Satoshi Kojima^a

^a Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan ^b Polyolefin Science & Technology Center, Japan Polychem Corporation, 1 Toho-cho, Yokkaichi, Mie 510-8530, Japan

ARTICLE INFO

Article history: Received 28 October 2009 Received in revised form 29 January 2010 Accepted 1 February 2010 Available online 6 February 2010

Keywords: Zr-catalyzed alkylalumination Supported zirconocene catalyst Modified SiO₂

ABSTRACT

Zirconocene dichloride (Cp₂ZrCl₂) supported on montmorillonite K-10, which has previously been shown to be an efficient catalytic system for olefin polymerization, was found to be comparable to the highly activated homogeneous combination of Cp₂ZrCl₂ and methylaluminoxane (MAO), and more reactive than the originally reported homogeneous catalytic system of Cp₂ZrCl₂/Me₃Al in the methylalumination reaction of an aryl substituted terminal alkyne. Examination of solvent effects in the ethylalumination reaction using Cp₂ZrCl₂ supported on montmorillonite K-10, SiO₂/LiOH, and SiO₂/MgO, indicated that the anionic counterpart of the actual catalytically active zirconocenium cation is highly delocalized, thus suggesting that the actual active zirconocenium cation is only very weakly coordinating with the anionic moiety. This accounts for the high activity of systems using solids such as co-catalysts and as supporting materials in olefin polymerization in general.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Zirconocene catalysts have been attracting much attention due to their applications in olefin polymerization [1] and organic synthesis [2,3]. In these reactions, the zirconocene catalysts are generally used in a combination with trialkylaluminium. Disproportionation between the zirconocene catalysts and trialkylaluminiums afford monoalkyl zirconocenium cation intermediates (Cp_2ZrR^+) as the actual catalytic species [4]. In the olefin polymerization reaction, these monoalkyl zirconocenium cations have also been generated by the addition of co-catalysts such as borates, boranes, and methylaluminoxane (MAO), which also serve to "stabilize" the cations by forming weakly coordinating Lewis bases (Fig. 1) [5]. The necessity of heterogeneous systems for industrial gas phase and slurry processes in olefin polymerization has stimulated studies on supported zirconocene catalysts [6] and acidic catalysts such as clay have been found to be highly effective [7].

The Negishi carboalumination reaction (Scheme 1) has been widely used as a versatile method for introducing alkyl groups on

E-mail addresses: rtakagi@hiroshima-u.ac.jp (R. Takagi), Yamamoto.Kazuhiro@mp.japanpe.co.jp (K. Yamamoto). to alkynes using zirconocene dichloride (Cp_2ZrCl_2) with alkylaluminiums [3,8,9]. Notable improvements to this reaction have been reported by Wipf and Lim who have disclosed that reactivity is significantly increased by using MAO in the place of Me₃Al [10], and by Lipshutz et al. who have found that the use of Cp modified catalysts improves the regioselectivity [9]. Otherwise there have been relatively few studies on modifications. In this study, we have examined how the reactivity would change upon using various supported zirconocene catalysts, which are useful for olefin polymerization.

2. Experimental

2.1. General

All reactions involving air- and moisture-sensitive reagents were carried out under N₂. Tetrahydrofuran (THF) was distilled after refluxing over Na-benzophenone prior to use. CH_2Cl_2 and benzene were distilled over CaH₂ prior to use.

¹H and ¹³C NMR spectra were recorded at 500 and 125 MHz, respectively. The internal reference for ¹H NMR spectra was 0.0 ppm (Me₄Si) for CDCl₃. Chemical shifts for ¹³C NMR spectra were referenced to CDCl₃ (77.0 ppm). MS were recorded under electron ionization (EI; 70 eV) conditions.SiO₂ (P-10) [11] was purchased from Fuji Silysia Chemicals Co. Montmorillonite K-10 [12] was purchased from Aldrich and dried at 220 °C for 2 h under reduced pressure.

^{*} Corresponding author. Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan. Tel.: +81 82 424 7434; fax: +81 82 424 0727.

^{**} Corresponding author at: Polyolefin Science & Technology Center, Japan Polychem Corporation, 1, Toho-cho, Yokkaichi, Mie 510-8530, Japan. Tel.: +81 59 345 7085.

^{1381-1169/\$ -} see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.molcata.2010.02.004

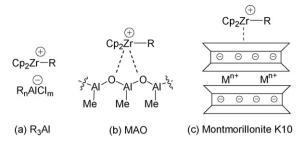


Fig. 1. Examples of ion pairs between zirconium monoalkyl cation (Cp₂ZrR⁺) and co-catalysts.

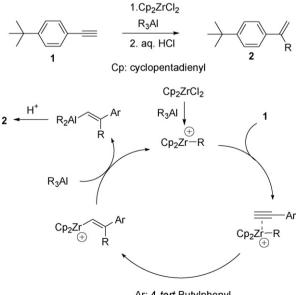
2.2. Preparation of modified solid materials

2.2.1. SiO₂ modification with MAO (SiO₂/MAO)

5.8 g of SiO₂ (P-10) and 9.0 mL of MAO (19.5 wt% MAO in toluene) were mixed at 40 °C to give a slurry. The slurry was then dried at 40 °C in vacuo. The resulting solid, SiO₂/MAO, was stored under nitrogen.

2.2.2. SiO₂ modification with LiOH (SiO₂/LiOH) [11]

1 g of SiO₂ (P-10) and 71.4 mg of LiOH were mixed in 20 mL of H₂O and the mixture was refluxed for 4 h. Then the mixture was heated to 150 °C with an oil bath to remove H₂O, to furnish a white solid. The solid was dried for an additional 2 h at 200 °C in vacuo and the resulting solid was stored under nitrogen.


2.2.3. SiO₂ modification with MgO (SiO₂/MgO) [11]

1 g of SiO₂ (P-10) and 0.12 g of MgO were mixed in 20 mL of H_2O and the mixture was refluxed for 1 hour. Then the mixture was heated to 150 °C with an oil bath to remove H₂O, to furnish a white solid. The solid was dried for an additional 2 h at 200 °C in vacuo and the resulting solid was stored under nitrogen.

2.3. General procedure for the alkylalumination of acetylene 1

2.3.1. Homogeneous alkylalumination

To a solution of Cp₂ZrCl₂ (0.1 equiv.) was added trialkylaluminium (2.0 equiv., Me₃Al: 2.0 M in hexane, Et₃Al: 1.0 M in hexane, MAO: 6.5 wt% in toluene) at room temperature. After stirring the

Ar: 4-tert-Butylphenyl

Scheme 1. Alkylalumination of acetylene 1.

mixture for 1 h, a solution of acetylene 1 was added at room temperature. The reaction mixture was stirred at room temperature and quenched with 1N HCl at 0°C. The resulting mixture was extracted with Et₂O. The combined organic layer was washed with H₂O and brine, dried over MgSO₄, and evaporated. The resulting residue was purified by silica gel column chromatography.

2.3.2. Heterogeneous alkylalumination

Trialkylaluminium (2.0 equiv.) was added to a solid material (100.0 mg) in a solvent at room temperature. After stirring the mixture for 1 h, Cp₂ZrCl₂ (0.1 equiv., 25.0 mg, 85 µmol) was added. To the mixture was added acetylene 1 (135.0 mg, 0.85 mmol). The reaction mixture was stirred at room temperature and guenched with 1N HCl at 0°C. The resulting mixture was filtered through Celite and the filtrate was extracted with Et₂O. The combined organic layer was washed with H₂O and brine, dried over MgSO₄, and evaporated. The resulting residue was purified by silica gel column chromatography.

2.3.3. 2-(4-tert-Butylphenyl)-1-propene (2a) [13]

¹H NMR (500 MHz, CDCl₃) δ 7.44–7.33 (m, 4 H), 5.35 (s, 1 H), 5.04 (dq, J=3.0, 1.5 Hz, 1 H), 2.14 (s, 3 H), 1.32 (s, 9 H).

2.3.4. 2-(4-tert-Butylphenyl)-1-butene (2b) [14]

¹H NMR (500 MHz, CDCl₃) δ 7.38–7.33 (m, 4 H), 5.27 (s, 1 H), 5.02 (q, J = 1.5 Hz, 1 H), 2.51 (q, J = 7.4 Hz, 2 H), 1.32 (s, 9 H), 1.11 (t, J=7.4 Hz, 3 H).

2.4. (1E)-1-(4-tert-Butylphenyl)-1-butene (2c) [15]

¹H NMR (500 MHz, CDCl₃) δ 7.33–7.26 (m, 4 H), 6.35 (d, *J* = 16.0 Hz, 1 H), 6.22 (dt, *J* = 16.0, 6.5 Hz, 1 H), 2.25–2.18 (m, 2 H), 1.31 (s, 9 H), 1.08 (t, J = 7.5 Hz, 3 H).

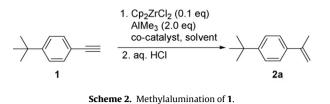
2.5. (1Z)-1-(4-tert-Butylphenyl)-1-butene (2d) [15]

¹H NMR (500 MHz, CDCl₃) δ 7.33–7.26 (m, 4 H), 6.34 (d, *J*=11.4 Hz, 1 H), 5.61 (dt, *J*=11.4, 7.3 Hz, 1 H), 2.39–2.32 (m, 2 H), 1.31 (s, 9 H), 0.88 (t, /=7.5 Hz, 3 H).

2.6. 1-tert-Butyl-4-vinylbenzene (2e) [16]

¹H NMR (500 MHz, CDCl₃) δ 7.35 (s, 4 H), 6.70 (dd, *J*=17.7, 11.0 Hz, 1 H), 5.70 (dd, J = 17.7, 1.0 Hz, 1 H), 5.19 (dd, J = 11.0, 1.1 Hz, 1.0 H), 1.32 (s, 9 H).

2.7. 2,4-Bis-(4-tert-butylphenyl)-1,3-hexadiene (2f)


¹H NMR (500 MHz, CDCl₃) δ 7.44–7.28 (m, 8 H), 6.40 (s, 1 H), 5.61 (s, 1 H), 5.19 (s, 1 H), 2.66 (q, J=7.5 Hz, 2 H), 1.34 (s, 9 H), 1.32 (s, 9 H), 0.97 (t, J=7.5 Hz, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 150.7, 150.1, 145.0, 144.9, 139.1, 137.9, 126.9, 126.2 (×2), 126.1 (×2), 125.2 (×2), 125.1 (×2), 113.1, 34.5, 34.5, 31.4 (×3), 31.3 (×3), 23.2, 13.9; HR-EIMS *m*/*z*: calcd. for C₂₆H₃₄ [M⁺] 346.2661. Found 346.2657.

2.8. 1-(4-tert-Butylphenyl)-1-butanone (3) [17]

¹H NMR (500 MHz, CDCl₃) δ 7.92–7.89 (m, 2 H), 7.49–7.45 (m, 2 H), 2.93 (t, /=7.2 Hz, 2 H), 1.81–1.83 (m, 2 H), 1.34 (s, 9 H), 1.00 (t, J = 7.4 Hz, 3 H).

2.9. 3-(4-tert-Butylphenyl)-3-buten-1-ol (4) [18]

¹H NMR (500 MHz, CDCl₃) δ 7.36 (s, 4 H), 5.41 (d, J = 1.3 Hz, 1 H), 5.12 (q, J = 1.3 Hz, 1 H), 3.74 (t, J = 6.4 Hz, 2 H), 2.79 (td, J = 6.4, 1.3 Hz)

2 H), 1.32 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃) δ 150.7, 144.4, 137.3, 125.7 (×2), 125.3 (×2), 113.8, 61.0, 38.5, 34.5, 31.3.

2.10. (3E)-(4-tert-Butylphenyl)-3-buten-1ol (5) [19]

¹H NMR (500 MHz, CDCl₃) δ 7.35–7.28 (m, 4 H), 6.48 (d, *J*=15.5 Hz, 1 H), 6.16 (dt, *J*=15.5, 7.2 Hz, 1 H), 3.74 (t, *J*=6.2 Hz, 2 H), 2.52–2.45 (m, 2 H), 1.31 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃) δ 150.4, 134.4, 132.6, 125.7 (×2), 125.5 (×2), 125.4, 62.1, 36.4, 34.7, 34.5, 31.3.

3. Results and discussion

The alkylalumination reaction of *tert*-butylphenylacetylene **1** was chosen as the type reaction [20] to evaluate zirconocene catalysts supported on solid materials (SiO₂/MAO, montmorillonite K-10) (Scheme 2). In order to choose an appropriate solvent for the reaction, several solvents were examined under the conventional homogeneous reaction conditions using only Cp₂ZrCl₂ and Me₃Al as the catalyst and methylating reagent (Fig. 2). The timecourse of the methylalumination was monitored by the measuring the ¹H NMR of the crude product. When CH₂Cl₂ was used as the solvent, most of acetylene 1 was converted to styrene 2 after 24 h. THF, benzene, and hexane were also examined. The reaction rates increased in the order of CH₂Cl₂ > hexane > benzene > THF. These results suggest that moderate polarity and low nucleophilicity are favorable for high reactivity. This is the same tendency observed for zirconocene catalyzed olefin polymerization and is in accord with cationic nature of the actual active catalytic species [4a,21].

On the basis of the examination of solvents, the time-courses of the methylalumination catalyzed by zirconocene supported on solid material were measured in CH₂Cl₂ and compared with reactions carried out under conventional homogeneous conditions (Fig. 3). Negishi carboalumination of alkynes [10] and alkenes [22], and zirconocene catalyzed olefin polymerization [4a,23] are considerably accelerated when MAO or Me₃Al treated with a small amount of water are used in the place of Me₃Al. The accelerating ability of MAO and water treated Me₃Al was also confirmed

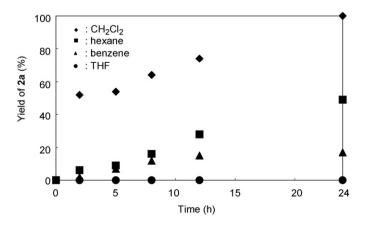
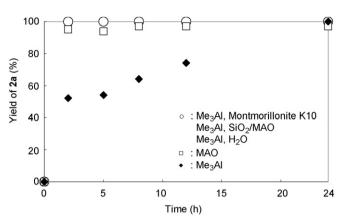
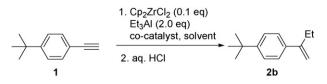
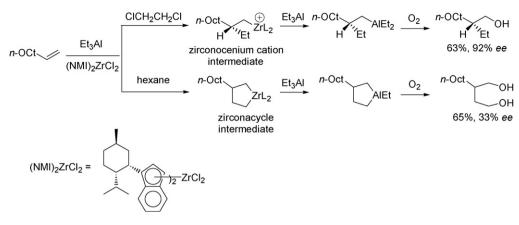


Fig. 2. Screening of solvents in homogeneous methylalumination using Cp_2ZrCl_2 and Me_3Al (0.53 M solution of 1).




Fig. 3. Time-course of the methylalumination in CH_2Cl_2 . Me_3Al , MAO, Me_3Al-H_2O : 0.53 M solution of 1. Me_3Al -montnorillonite K-10, Me_3Al -SiO₂/MAO: 0.32 M solution of 1.

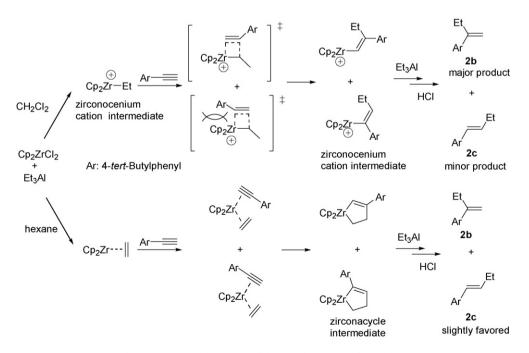
in our studies and most of acetylene **1** was consumed after 2 h. Heterogeneous systems using solid materials (SiO₂/MAO and montmorillonite K-10), previously reported to be highly effective in olefin polymerization [6,24], were found to be equally effective as the homogeneous reaction using MAO. Especially noteworthy is the reaction of montmorillonite K-10 which clearly showed that MAO is not necessarily required for rate accelerating.


The similarity in high reactivity between the homogeneous (MAO; Me_3Al-H_2O) and heterogeneous MAO (Me_3Al , SiO_2/MAO) systems indicates the counteranion moiety of the actual catalytically active zirconocenium cation to be similar between the two systems, with coordination between the cation and the counteranion moiety being weak. Because of its similar high reactivity, a similar situation is anticipated for the montmorillonite K-10 supported zirconocene system using Me_3Al , although the identity of the added aluminium agent is quite different.

Next, we decided to examine the ethylalumination of acetylene 1 catalyzed by zirconocene supported on solid materials in CH₂Cl₂ and hexane (Scheme 3). Precedence shows that when Et₃Al is used, in addition to products corresponding to those in the carboalumination reaction using Me₃Al, which is speculated to involve zirconocenium cation intermediates, products that can be attributed to arise via zirconacycles are produced [20b,25]. An examination of the reaction of 1-decene using (NMI)₂ZrCl as catalyst revealed that the products were dependent on the polarity of solvent, with products involving zirconocenium cation intermediates favored in polar solvents such as (CH₂Cl)₂, whereas products via the zirconacycle intermediate were preferred in nonpolar solvents such as hexane (Scheme 4) [25]. These results indicate that the ion pair of the zirconocenium cation and its counteranion, generated from the disproportionation between Cp₂ZrCl₂ and triethylaluminium, was destabilized in nonpolar hexane due to the highly polar nature of the ion pair, thereby favoring product formation via the relatively nonpolar zirconacycle intermediate [26–28].

For our supported system, since the cation moiety is common with the homogeneous system (Cp_2ZrCl_2/R_3Al), and the negative charge of the anionic moiety is delocalized on the support surface, the polarity of the active cationic catalyst–counterion ion pair as

Scheme 3. Ethylalumination of 1.


Scheme 4. Solvent effect in the ethylalumination of 1-decene.

a whole is expected to be low compared with that of the homogeneous system. This would mean that the active zirconocenium ion pair from the supported catalyst should be relatively more stable than that from the homogeneous catalyst in nonpolar solvents. Thus, it was anticipated that an increase in the proportion of product **2b** would be observed in reactions using solid supports carried out in nonpolar solvents, in comparison with homogeneous reactions carried out in the absence of solid supports (Scheme 5). To verify this hypothesis, we carried out the ethylalumination reaction in nonpolar hexane.

The ethylalumination of **1** was first examined in CH_2Cl_2 (Table 1). When the ethylalumination reaction was performed for 8 h in the absence of solid materials, styrene **2b** was preferentially obtained as the major product along with a small amount (16%) of recovered acetylene **1** (**2b**:**2c** = ca. 5:1, Table 1, entry 1) and minute amounts of by-products **2d–f**. Extending the reaction time to 24 h did not conduce to improvement of the conversion of **1** [29]. For reactions using solid supports, SiO₂/MAO gave results similar to those of the homogenous reaction (Table 1, entry 2). However, when montmorillonite K-10 was used as the solid support, the proportion of **2c** increased somewhat (**2b**:**2c** = ca. 5:2) (Table 1, entry 5). We had recently disclosed the efficiency of zirconocene

supported on base modified SiO₂ (namely SiO₂/MgO, SiO₂/LiOH, and SiO₂/NaOH) as catalysts for non-MAO ethylene polymerization [11]. It was found that in the ethylene polymerization reaction, the performance of the catalysts were on the same high level with activity being 67 kg PE/g Zr/h for SiO₂/MgO (3.0 mmol base/g SiO₂), 57.5 kg PE/g Zr/h for SiO₂/LiOH (0.8 mmol base/g SiO₂), and 11.5 kg PE/g Zr/h for SiO₂/NaOH (0.5 mmol base/g SiO₂), respectively. On the premise of these results, we examined these solid materials in the ethylalumination reaction. Results using SiO₂/LiOH, and SiO₂/MgO turned out to be practically the same as those of the homogeneous system and the reaction using SiO₂/MAO (Table 1, entries 2–4).

Results of reactions carried out in hexane are summarized in Table 2. When acetylene **1** was treated with Cp_2ZrCl_2 (0.1 equiv.) and Et₃Al (2.0 equiv.) in hexane for 8 h, a mixture of styrene derivatives **2b**, **c** and **2e**, **f** was obtained along with the oxygenated products **3–5**, which probably formed by the adventitious traces of oxygen in the solvents (Table 2, entry 1). In contrast with the reaction in CH_2Cl_2 , **2c** was slightly favored over **2b**. The increase of styrene **2c** in this nonpolar solvent implies the preference for the zirconacycle pathway (Scheme 6). The use of SiO₂/MAO resulted in an even distribution of **2b** and **2c** (Table 2, entry 2). On the

Scheme 5. Proposed mechanism of the ethylalumination of acetylene 1.

Table 1

Ethylalumination of 1 catalyzed by zirconocene supported on solid materials in CH₂Cl₂.^a.

Entry	Co-catalyst	Product (%) ^b							
			ArEt	Ar Et	Ar	Ar Ar Et			
		2b	2c	2d	2e	2f	1		
1	_	53	11	1	3	0.5	16		
2	SiO ₂ /MAO	47	8	0.5	2	1	18		
3	SiO ₂ /LiOH	49	9	0.9	2	0.4	7		
4	SiO ₂ /MgO	48	10	0.8	2	0.7	6		
5	Montmorillonite K-10	44	17	1	2	3	6		

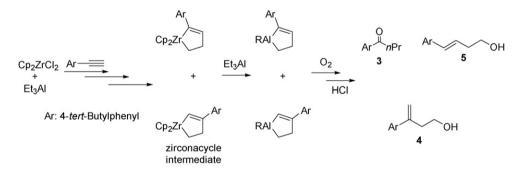

^a Acetylene **1** was treated with Cp₂ZrCl₂ (0.1 equiv.), Et₃Al (2.0 equiv.) and/or co-catalyst in CH₂Cl₂ (0.17 M solution of **1**) at room temperature for 8 h. ^b Isolated yield.

Table 2

Ethylalumination of 1 catalyzed by zirconocene supported on solid materials in hexane.^a.

Entry	Co-catalyst	Product (Product (%) ^b								
		Et Ar	Ar Et	Ar 🔨	Ar Ar Et	O Ar nPr	ArtoH	Ar~~OH			
		2b	2c	2e	2f	3	4	5	1		
1	-	19	23	1	-	2	2	2	20		
2	SiO ₂ /MAO	26	27	0.6	-	2	3	3	7		
3	SiO ₂ /LiOH	31	26	1	1	1	2	3	5		
4	SiO ₂ /MgO	29	22	1	1	1	1	2	5		
5	Montmorillonite K-10	23	17	1	2	1	2	2	4		

^a Acetylene **1** was treated with Cp₂ZrCl₂ (0.1 equiv.), Et₃Al (2.0 equiv.) and/or co-catalyst in hexane (0.17 M solution of **1**) at room temperature for 8 h. ^b Isolated yield.

Scheme 6. Plausible reaction mechanism for generation of 3-5.

other hand, the addition of solid materials, montmorillonite K-10, $SiO_2/LiOH$, and SiO_2/MgO , to the zirconocene catalyst system lead to a reversal of selectivity, slightly favoring styrene **2b** (Table 2, entries 3–5). These results suggest that the zirconocenium cation pathway is more favorable with supported systems compared with the conventional homogeneous system (Cp₂ZrCl₂/R₃Al). Thus, the supported systems can be considered to be less polar than the homogeneous system (Cp₂ZrCl₂/R₃Al).

4. Conclusion

Zirconocene catalysts supported on solid materials have been known to be highly efficient catalysts in practical homogenous olefin polymerization. In order to see whether such catalytic systems could be applied to other organic reactions and to obtain insight on the properties of the solid catalysts as feedback for gaining an understanding of polymerization reactions, we have examined the zirconocene catalyzed alkylalumination reaction. In the methylalumination of acetylene **1**, it was found that the use of montmorillonite K-10 in conjunction with Me₃Al gives rise to reactivity comparable to that exerted by the homogeneous reaction using MAO. Therefore, negating the use of MAO for activation of this reaction is possible by using montmorillonite K-10 which functions as both solid support and co-catalyst. In the ethylalumination reaction, which is known to give rise to products via uncharged zirconacycle intermediates in addition to zirconocenium cation catalyzed products, examination of solvent effects revealed that in contrast to the homogenous catalyst system (Cp₂ZrCl₂/R₃Al), the heterogeneous systems using montmorillonite K-10, SiO₂/LiOH, and SiO₂/MgO are affected only slightly. This solvent effect indicated that the coordinating ability of the anionic moiety to the actual active zirconocenium cation is weakened by the delocalization of negative charge and the polar nature of the active catalyst-counterion ion pair is low in polarity. This should account for the high activity observed using montmorillonite K-10, SiO₂/LiOH, and SiO₂/MgO as supporting materials in the ethylene polymerization reaction.

Acknowledgements

NMR and MS measurements were made using JEOL JMN-LA500 and JEOL SX-102A, respectively, at the Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University. We thank Dr. Yoshikazu Hiraga, Graduate School of Science, Hiroshima University, for NMR measurements (JEOL JMN-LA500) at the Hiroshima Prefectural Institute of Science and Technology. We thank Dr. Manabu Abe for his helpful discussions.

References

- [1] For recent reviews related to zirconocene catalyzed polymerization:
 - (a) W. Kaminsky, Catal. Today 20 (1994) 257;
 - (b) M. Bochmann, J. Chem. Soc., Dalton Trans. (1996) 255;
 - (c) M. Bochmann, Top. Catal. 7 (1999) 9;
 - (d) L. Luo, T.J. Marks, Top. Catal. 7 (1999) 97;
 - (e) H.G. Alt, A. Köppl, Chem. Rev. 100 (2000) 1205;
 - (f) G.W. Coates, Chem. Rev. 100 (2000) 1223;
 - (g) L. Resconi, L. Cavallo, A. Fait, F. Piemontesi, Chem. Rev. 100 (2000) 1253;
 - (h) K. Angermund, G. Fink, V.R. Jensen, R. Kleinschmidt, Chem. Rev. 100 (2000) 1457;
 - (i) Y. Imanishi, N. Naga, Prog. Polym. Sci. 26 (2001) 1147;
 - (j) M. Bochmann, J. Organomet. Chem. 689 (2004) 3982;
 - (k) W. Kaminsky, J. Polym. Sci. A: Polym. Chem. 42 (2004) 3911;
 - (I) P.C. Möhring, N.J. Coville, Coord. Chem. Rev. 250 (2006) 18;
 - (m) W. Kaminsky, O. Sperber, R. Werner, Coord. Chem. Rev. 250 (2006) 110;
 - (n) S. Prashar, A. Antiñolo, A. Otero, Coord. Chem. Rev. 250 (2006) 133;
 - (o) A. Razavi, U. Thewalt, Coord. Chem. Rev. 250 (2006) 155;
 - (p) C. Cobzaru, S. Hild, A. Boger, C. Troll, B. Rieger, Coord. Chem. Rev. 250 (2006) 189;
 - (q) B. Wang, Coord. Chem. Rev. 250 (2006) 242.
- [2] For recent reviews on zirconocene-catalyzed organic reactions in general:
 - (a) R.D. Broene, S.L. Buchwald, Science 261 (1993) 1696;
 - (b) Y. Hanzawa, H. Ito, T. Taguchi, Synlett (1995) 299;
 - (c) P. Wipf, H. Jahn, Tetrahedron 52 (1996) 12853;
 - (d) I. Marek (Ed.), Titanium and Zirconium in Organic Synthesis, Wiley–VCH, Weinheim, 2002;
 - (e) P. Wipf, C. Kendall, Chem. Eur. J. 8 (2002) 1778;
 - (f) A.P. Duncan, R.G. Bergman, Chem. Rec. 2 (2002) 431;
 - (g) U. Rosenthal, P. Arndt, W. Baumann, V.V. Burlakov, A. Spannenberg, J. Organomet. Chem. 670 (2003) 84;
 - (h) I. Bytschkov, S. Doye, Eur. J. Org. Chem. 6 (2003) 935;
 - (i) K. Fujita, H. Yorimitsu, K. Oshima, Chem. Rec. 4 (2004) 110;
 - (j) J. Barluenga, F. Rodríguez, L. Álvarez-Rodrigo, F.J. Fañanás, Chem. Soc. Rev. 34 (2005) 762;
 - (k) J. Szymoniak, P. Bertus, Top. Organomet. Chem. 10 (2005) 107;
 - (I) F.J. Fañanás, F. Rodríguez, Eur. J. Org. Chem. 8 (2008) 1315.
- [3] For recent reviews related to the application of zirconocene-catalyzed alkylalumination in organic synthesis:
 - (a) E. Negishi, Q. Hu, Z. Huang, M. Qian, G. Wang, Aldrichim. Acta 38 (2005) 71;
 - (b) E. Negishi, Z. Tan, Top. Organomet. Chem. 8 (2005) 139;
- (c) E. Negishi, Z. Huang, G. Wang, S. Mohan, C. Wang, H. Hattori, Acc. Chem. Res. 41 (2008) 1474.
- [4] (a) R.F. Jordan, C.S. Bajgur, R. Willet, B. Scott, J. Am. Chem. Soc. 108 (1986) 7410;
 (b) P.G. Gassman, M.R. Callstrom, J. Am. Chem. Soc. 109 (1987) 7875;
 - (c) C. Sishta, R.M. Hathorn, T.J. Marks, J. Am. Chem. Soc. 114 (1992) 1112;
 - (d) X. Yang, C.L. Stern, T.J. Marks, J. Am. Chem. Soc. 116 (1994) 10015;
 - (e) M. Bochmann, S.J. Lancaster, Angew. Chem. Int. Ed. Engl. 33 (1994) 1634;
 - (f) L. Jia, X. Yang, A. Ishihara, T.J. Marks, Organometallics 14 (1995) 3135;
 - (g) A.R. Siedle, W.M. Lamanna, R.A. Newmark, J.N. Schroepfer, J. Mol. Catal. A: Chem. 128 (1998) 257;
 - (h) D. Feichtinger, D.A. Plattner, P. Chen, J. Am. Chem. Soc. 120 (1998) 7125;
 (i) L.S. Santos, J.O. Metzger, Angew. Chem. Int. Ed. 45 (2006) 977.
- [5] (a) E.Y.-X. Chen, T.J. Marks, Chem. Rev. 100 (2000) 1391;
- (b) C.J. Price, H.-Y. Chen, L.M. Launer, S.A. Miller, Angew. Chem. Int. Ed. 48 (2009) 956.
- [6] For reviews on supported ziroconocene catalysts:

(a) J.C.W. Chien, Top. Catal. 7 (1999) 23;

- (b) J.C.W. Chien, in: J. Scheirs, W. Kaminsky (Eds.), Metallocene-Based Polyolefins, John Wiley and Sons, Chichester, 2000, p. 173;
- (c) G.G. Hlatky, in: J. Scheirs, W. Kaminsky (Eds.), Metallocene-Based Polyolefins, John Wiley and Sons, Chichester, 2000, p. 201;
- (d) J.R. Severn, J.C. Chadwick (Eds.), Tailor-Made Polymers: Via Immobilization of Alpha-Olefin Polymerization Catalysts, Wiley–VCH, Weinheim, 2008.

- [7] (a) Y. Suga, Y. Maruyama, E. Isobe, T. Suziki, F. Shimizu, EP 0511 665 A2 (1992), to Mitsubishi Kasei Corporation;
 - (b) K. Weiss, C. Wirth-Pfeifer, M. Hofmann, S. Botzenhardt, H. Lang, K. Brüning, E. Meichel, J. Mol. Catal. A: Chem. 182–183 (2002) 143;
 - (c) C. Liu, T. Tang, B. Huang, J. Catal. 221 (2004) 162;
 - (d) Q. Wang, Z. Zhou, L. Song, H. Xu, L. Wang, J. Polym. Sci. A: Polym. Chem. 42 (2004) 38;
 - (e) K. Yamamoto, Y. Ishihama, E. Isobe, T. Sugano, J. Poly. Sci. A: Polym. Chem. 47 (2009) 2272.
- [8] For some recent reports related to the application of zirconocene-catalyzed alkylalumination in organic synthesis:
 - (a) M. Magnin-Lachaux, Z. Tan, B. Liang, E. Negishi, Org. Lett. 6 (2004) 1425;
 - (b) P. Wipf, D.L. Waller, J.T. Reeves, J. Org. Chem. 70 (2005) 8096;
 - (c) T. Novak, Z. Tan, B. Liang, E. Negishi, J. Am. Chem. Soc. 127 (2005) 2838;
 - (d) B. Liang, T. Novak, Z. Tan, E. Negishi, J. Am. Chem. Soc. 128 (2006) 2770;
 - (e) G. Zhu, E. Negishi, Org. Lett. 9 (2007) 2771;
 - (f) B.H. Lipshutz, T. Butler, A. Lower, J. Servesko, Org. Lett. 9 (2007) 3737;
 - (g) B. Liang, E. Negishi, Org. Lett. 10 (2008) 193;
 - (h) Z. Xu, E. Negishi, Org. Lett. 10 (2008) 4311;
 - (i) J.R. DeBergh, K.M. Spivey, J.M. Ready, J. Am. Chem. Soc. 130 (2008) 7828;
 - (j) G. Zhu, B. Liang, E. Negishi, Org. Lett. 10 (2008) 1099;
 - (k) Z. Tan, B. Liang, S. Huo, J. Shi, E. Negishi, Tetrahedron: Asymmetry 17 (2008) 512:
 - (l) G. Wang, E. Negishi, Eur. J. Org. Chem. (2009) 1679.
- [9] B.H. Lipshutz, T. Butler, A. Lower, J. Am. Chem. Soc. 128 (2006) 15396.
- [10] P. Wipf, S. Lim, Angew. Chem. Int. Ed. 32 (1993) 1068.
- [11] K. Yamamoto, Appl. Catal. A: Gen. 368 (2009) 65.
- [12] J.R. Sohn, M.Y. Park, Appl. Catal. A: Gen. 101 (1993) 129.
- [13] E. Peyroux, F. Berthiol, H. Doucet, M. Santelli, Eur. J. Org. Chem. (2004) 1075.
- [14] J.J. Eisch, A.A. Adeosun, Eur. J. Org. Chem. (2005) 993.
- [15] Y. Moussaoui, K. Saïd, R.B. Salem, ARKIVOC xii (2006) 1.
- [16] S.E. Denmark, C.R. Butler, J. Am. Chem. Soc. 130 (2008) 3690.
- [17] F. Aulenta, A. Hölemann, H.-U. Reißig, Eur. J. Org. Chem. (2006) 1733.
- [18] M.T. Reetz, H. Guo, J.-A. Ma, R. Goddard, R.J. Mynott, J. Am. Chem. Soc. 131 (2009) 4136.
- [19] K. Oh, W.E. Knabe, Tetrahedron 65 (2009) 2966.
- [20] (a) E. Negishi, D.E. Van Horn, T. Yoshida, J. Am. Chem. Soc. 107 (1985) 6639;
 (b) E. Negishi, D.Y. Kondakov, D. Choueiry, K. Kasai, T. Takahashi, J. Am. Chem. Soc. 118 (1996) 9577.
- [21] (a) J.C.W. Chien, W. Song, M.D. Rausch, Macromolecules 26 (1993) 3239;
 (b) D. Coevoet, H. Cramail, A. Deffieux, Macromol. Chem. Phys. 197 (1996) 855;
 (c) F. Forlini, Z.-Q. Fan, I. Tritto, P. Locatelli, M.C. Sacchi, Macromol. Chem. Phys. 198 (1997) 2397.
- [22] (a) P. Wipf, S. Ribe, Org. Lett. 2 (2000) 1713;
- (b) P. Wipf, S. Ribe, Org. Lett. 3 (2001) 1503.
- [23] (a) H. Sinn, W. Kaminsky, Adv. Organomet. Chem. 18 (1980) 99;
 (b) H. Sinn, W. Kaminsky, H.-J. Vollmer, R. Woldt, Angew. Chem. Int. Ed. 19 (1980) 390;
 (c) U. S. Carter, J.O. Materia: Angew. Chem. Int. Ed. 45 (2005) 077.
 - (c) L.S. Santos, J.O. Metzger, Angew. Chem. Int. Ed. 45 (2006) 977.
- [24] (a) R. Goretzki, G. Fink, Macromol. Chem. Phys. 200 (1999) 881;
 (b) A. Köppl, H.G. Alt, M.D. Phillips, J. Appl. Polym. Sci. 80 (2001) 454;
 (c) J.H.Z. dos Santos, A.E. Gerbase, K.C. Rodenbusch, G.P. Pires, M. Martinelli, K.M. Bichinho, J. Mol. Catal. A: Chem. 184 (2002) 167;
 (d) N.I. Mäkelä-Vaarne, D.G. Nicholson, A.L. Ramstad, J. Mol. Catal. A: Chem. 200 (2003) 323;
 - (e) B. Jongsomjit, P. Kaewkrajang, S.E. Wanke, P. Praserthdam, Catal. Lett. 94 (2004) 205;
 - (f) J.A.M. Awudza, P.J.T. Tait, J. Polym. Sci. A: Polym. Chem. 46 (2008) 267.
- [25] (a) D.Y. Kondakov, E. Negishi, J. Am. Chem. Soc. 118 (1996) 1577;
- (b) E. Negishi, Z. Tan, B. Liang, T. Novak, PNAS 101 (2004) 5782.
- [26] For a related study see:
 - V.M. Dzhemilev, A.G. Ibragimov, A.P. Zolotarev, R.R. Muslukhov, G.A. Tolstikov, Izv. Akad. Nauk SSSR, Ser. Khim. (Engl. Transl.) (1989) 194;
 V.M. Dzhemilev, A.G. Ibragimov, A.P. Zolotarev, R.R. Muslukhov, G.A. Tolstikov, Izv. Akad. Nauk SSSR, Ser. Khim. (Engl. Transl.) (1991) 2570.
- [27] Styrene 2c is favored over 2b because of a favorable interaction between the Lewis acidic zirconium atom and the aryl group in the zirconacycle precursor to 2c.
- [28] X. Zhenfeng, R. Hara, T. Takahashi, J. Org. Chem. 60 (1995) 4444.
- [29] When acetylene 1 was treated with Cp₂ZrCl₂ (0.2 equiv.) and Et₃Al (2.0 equiv.) in CH₂Cl₂ for 24 h, a mixture of styrenes 2b–e and acetylene 1 was obtained (2b: 34%, 2c: 7%, 2d: 1%, 2e: 0.4%, 1: 12%).

 Scott, J. Am. Chem. Soc. 108 (1986) 7410;
 (c) J.H.Z.

 n. Chem. Soc. 109 (1987) 7875.
 (d) N.I. Mä